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Perturbation theory for discotic nematic liquid crystals of axially
symmetric molecules: e� ect of dispersion interaction
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and T. K. LAHIRI
Central Hindu School, Banaras Hindu University, Varanasi-221 005, India

(Received 6 August 1997; accepted 1 May 1998 )

We investigate the in¯ uence of dispersion interaction on a variety of thermodynamic properties
of discotic nematic liquid crystals at the discotic nematic± isotropic transition. We report
calculations for a hard oblate ellipsoidal system, superposed with an attractive interaction
represented by dispersion interaction subjected to di� erent external pressures ranging from
1 to 300 bar. We consider a model system (which simulates a discotic nematic liquid crystal)
in which molecules are assumed to interact via a pair potential having both repulsive
and attractive parts. The repulsion part is represented by a repulsion between hard oblate
ellipsoids of revolution and is a short range, rapidly varying potential. The attractive potential,
a function of centre of mass distance and relative orientation between two molecules, is
represented by dispersion interaction. The properties of the reference system and ® rst order
perturbation term are evaluated using a decoupling approximation which decouples
orientational from translational degrees of freedom. The inclusion of fourth and sixth rank
orientational order parameters in the calculation slightly improves the result. The role of
pressure on phase transition parameters has also been studied.

1. Introduction accurate prediction of a phase transition density [2] .
Among extensive work [2± 4] on hard ellipsoid molecules,Molecules consisting of hard ellipsoids of revolution
based on Onsager like theory, Samborsk et al. treat the(HER) and other similar hard-core molecules such as
second and the third virial coe� cients in the same way,hard sphero-cylinders (HSC) and hard dumbells (HD)
but the fourth and higher virials, are re-summed in ahave long served as some of the most important models
manner consistent with the Carnahan± Starling equationfor phase transitions in condensed matter consisting
of state for hard spheres. This work provides analyticalof nonspherical molecules. There are two reasons for
expressions for the free energy and direct correlationthe importance of hard-core models. First, they can be
function in terms of the second and third virial coe� cients,used to test molecular theories for static and dynamic
along with other results.properties of liquid crystals; secondly, they may pro-

Several authors [5± 8] have used a density functionalvide a starting point for thermodynamic perturbation
theory (DFT) to study the ® rst order I± N transition andtheories. Onsager made a major contribution to our
the freezing transition with fair success. In the DFT ofunderstanding of the nematic phase with his simple
Singh and Singh [5] for hard ellipsoids, one starts fromtheory [1] of the isotropic± nematic (I± N) transition
a DFT expression for the free energy of the orderedin the HSC system. The isotropic to nematic liquid
(nematic) phase and expands it around the disorderedcrystal transition could be predicted on the basis of a
(isotropic) phase to third order in the local densityvirial expansion for the Helmholtz free energy and this
change. The I± N transition for hard ellipsoids is foundexpansion had only to include the lowest order inter-
to occur at lower densities than predicted by the otheraction term arising from the second virial coe� cient. As
approach. The DFT of Colot and coworkers [6] has ana particle becomes more elongated, the higher virial
explicit oblate± prolate symmetry and leads to simplecoe� cients become progressively less important and so
analytic expressions, e.g. for the equation of state of theonly the second virial is necessary for a quantitatively
isotropic phase. The results of the theory of Colot et al.
produce all the qualitative features provided by the² Current address: Cent. Foren. Sc. Lab., Plot No. 2,

Sector 36A, Chandigarh± 160036, India. computer simulation of Frenkel and Mulder in the case
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1000 K. Singh et al.

of the isotropic phase, and fair agreement for the nematic where vector x i [; (ri, X i)] represents both the position
of centre of mass of the ith molecule and its relativephase and the isotropic± nematic coexistence.
orientation V i described by Euler’s angles hi, w i and yi.Allen and Frenkel [3 (c)] have carried out the ® rst
U o (x i , xj ) represents the reference potential which ismolecular dynamics simulations of a system of pro-
described by the repulsion between the hard oblatelate HER, near the I± N phase transition. Computer
ellipsoids of revolution, and satis® es the relationsimulations [2± 4] have shown that a system of hard

ellipsoids does exhibit some liquid crystal phases and
U o (r1 2 , V1 , V2 ) ; U o (r1 2 , V1 2 )= U o [r1 2 /D(V1 2 )]can thus be used as a simple reference system for the

study of nonspherical molecules. The simulations have
= U o (r*

1 2 )= G2 for r*
1 2 < 1

0 for r*
1 2 > 1.

(2)also shown that liquid crystal phases can be formed
both by prolate (rod-like) and by oblate (disc-like) hard
ellipsoids. These facts indicate that the hard ellipsoids Here D(V1 2 ) [; D(r1 2 , V1 , V2 )] is the distance of closest
system can be expected to provide a good reference approach between two molecules with relative orien-
system for a perturbational treatment [9] of a more tation V1 2 , r1 2 is a vector joining the centres of mass of
realistic system of dislike molecules. two molecules and r*

1 2 = |r1 2 |/D(V1 2 ). For D (V1 2 ), we use
We have applied a perturbation expansion method [10] the expression given by the Gaussian overlap model of

of a rod-shaped system to study a molecular description Berne and Pechukas [14] .
of the equilibrium properties of discotic nematogens The perturbation potential U p (x i, xj ) contains the
[11] . We assume that disc-shaped molecules are oblate more smoothly varying long-range attractive part. It is a
ellipsoids of revolution parameterized by their length function of only the centres of mass distance and the
to width ratio x0 (=2a/2b, where 2a and 2b denote, relativeorientationbetween twomolecules, and is approxi-
respectively, the lengths of major and minor axes of the mated by the interaction arising from the dispersion force
ellipsoids) which is less than one for oblate ellipsoids. between twoasymmetric molecules. We adopt the follow-
This work is similar to that of our previous publication ing form for the perturbation potential:
[12] in which the e� ects of dispersion and quadrupolar

U p (r1 2 , V1 , V2 )= Õ r Õ 6
1 2 [Ci +Ca P2 (cos h1 2 )],interactionwere separatelyconsideredondiscoticnematic±

isotropic (DN± I) transition properties of the discotic for r1 2 > D(V1 2 ). (3)
nematic phase close to transition. But the numerical results
in [12] are limited to only the second order orientational Here Ci and Ca are constants related to isotropic and
order parameter, whereas the importance of higher order anisotropic dispersion interactions and h1 2 is the angle
orientational order parameters has been demonstrated between the axes of two molecules. The perturbation

potential so chosen is certainly an oversimpli® cation ofexperimentally [13] . In this paper we extend the calcu-
the intermolecular potential of real liquid crystals butlation of equilibrium properties of discotic nematics,
this is in accordance with Maier± Saupe theory [15] .retaining second, fourth and sixth rank long range

Adopting the procedure as outlined in [10] , we writeorientational order parameters (P2 , P4 and P6 ) in the
the total Helmholtz free energy A of the system asevaluation of the angle-dependent term in the expression

of excluded volume and perturbation term. The in¯ uence
of pressure on stability, ordering and thermodynamic bA

N
=

bAo

N
+ �

2

s= 1

bA
(s)

N
(4a)

properties, for suitably chosen potential parameters, is
also analysed at the DN± I transition. In the following where b = 1/kT and Ao is the contribution of thesection a brief account of the theory is given and working reference system. The second term of equation (4a) is aequations are summarized. Results and discussions are perturbation series with s as a perturbation order.given in §3. In order to calculate the thermodynamic properties

of the reference system (hard ellipsoids) we start with
the pressure equation2. Theory and working equations

We consider a system composed of N axially sym-
metric discotic nematic molecules in a volume V at

bpo

r
= 1 Õ

1

6
brP d r1 2P f (V1 )dV1P f (V2 )dV2

temperature T , interacting through a potential function
given by Ö [r1 2 = uo (r1 2 , V1 2 )go (r1 2 , V1 2 )]. (4b)

UN(x1 , x2 , ¼ , xN)= �
1 < i< j < N

[U o (x i, xj )+U p (x i, xj )] Here the operator = acts only on r1 2 coordinates of
U o (r1 2 , V1 2 ). Following Parsons [16] , we approxi-
mate the reference system pair correlation function(1)
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1001T heory of discotic nematics: e� ect of dispersion interaction

go (r1 2 , V1 2 ) as interaction. One ® nds that the expression (6) is similar
to the corresponding equations derived by Vroege and

go (r1 2 , V1 2 )= go [r1 2 /D(V1 2 )] = go (r*
1 2 ). (4c) Lekkerkerker [17] and Samborsk et al. [4] .

This approximationcompletelydecouples theorientational The ® rst order perturbation to the Helmholtz free
and positional degrees of freedom. We consider excluded energy is given by
volume or co-volume between the two ellipsoids of
revolution as bA ( 1 )

N
= bP dV1 f (V1 )y( 1 ) (V1 ). (7)

Ve x c =
1

3P D3 (V1 2 )dr1 2 The term y( 1 ) (V1 ) is de® ned as an e� ective one-body
orientational perturbation potential and is given by

= 8vo (1 Õ x2 )Õ 1 /2 (1 Õ x2 cos2 h1 2 )1 /2 (4d)
y( 1 ) (V1 )=

1

2
rP dV2 f (V2 )P dr1 2 upwhere vo is the volume of a molecule and

x= x2
o Õ 1/x

2
o +1.

Ö (r1 2 , V1 , V2 )go (r1 2 , V1 2 ). (8)Taking the Berne and Pechukas [14] relation for
D(r1 2 , V1 2 ) and reducing the distance variable with By reducing the distance variables in equation (8) with
D(r1 2 , V1 2 ) and using equations (4c) and (4d), we get D(r1 2 , V1 2 ), applying the decoupling approximation and

solving the integrals involved, we get ® nallybpo

r
=

1+2g(2 Õ g)

(1 Õ g)3
[F 0 (x) Õ F 2 (x)P2

2
bA ( 1 )

N
= Õ bw0 Õ bw2 P2

2 Õ bw4 P2
4 Õ bw6 P2

6 (9)
Õ F 4 (x)P2

4 Õ F 6 (x)P2
6 ] (4e)

wherewhere

g= rv0 wk = A p

12
x0
BgI6 (g)C*

i Nk k = 0, 2, 4 and 6

F 0 (x)= (1 Õ x2 )Õ 1 /2 A1 Õ
1

6
x2 Õ

1

40
x4 Õ

1

112
x6 Õ ¼ B

N 0 = A0 +
1

5
A2 C*

a /C
*
i

F 2 (x)=
x2

3
(1 Õ x2 )Õ 1 /2 A1+

3

14
x2 +

5

56
x4 +

25

528
x6 + ¼ B

N 2 = A2 + AA0 +
2

7
A2 +

2

7
A4
BC*

a /C
*
i

F 4 (x)=
x4

35
(1 Õ x2 )Õ 1 /2 A1+

15

22
x2 +

525

1144
x4 + ¼ B

N 4 = A4 + A18

35
A2 +

20

77
A4
BC*

a /C
*
i

F 6 (x)=
x6

231
(1 Õ x2 )Õ 1 /2 A1+

7

6
x2 +

147

136
x4 + ¼ B .

N 6 = A6 + A 5

11
A4 +

14

55
A6
BC*

a /C
*
i

The orientational order parameter can be written
C*

i = Ci /v
2
0 and C*

a = Ca /v
2
0 .

Pn =P dV f (V)Pn(cos h). (5) A0 , A2 , A4 and A6 are constants appearing in the integral
I6 (g) which is de® ned as

The Helmholtz free energy per particle for the reference
system can now be evaluated using the standard I6 (r, T )=P2

0

r* Õ 4
1 2 g( 0 )

h s (r*
1 2 )dr*

1 2 (10)
thermodynamic relation and we write

and evaluated from the series proposed by LarsenbAo

N
= (ln r Õ 1)+ 7 ln[4p f (V)]8 +

g(4 Õ 3g)

(1 Õ g)2 et al. [18] .
The total con® gurational Helmholtz free energy is

Ö [F 0 (x) Õ F 2 (x)P2
2 Õ F 4 (x)P2

4 Õ F 6 (x)P2
6 ]. obtained by adding equations (6) and (9).

The one particle orientational distribution function(6)
f (V) at a speci® ed temperature and pressure is deter-

The angular bracket 7 ¼ 8 in equation (6) denotes mined by minimizing the free energy with respect to
the ensemble average over the (N Õ 1) particles of variation of f (V) subject to the constraint
the system. Here the ® rst two terms represent the free
energy of a gas of non-interacting molecules, the third P f (V)dV = 1. (11)
is the excess free energy arising from the inter-particle

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1002 K. Singh et al.

The exact expression of f (V) leads directly to the tran-
scendental equations for the second, fourth and sixth
rank order parameters as de® ned by equation (5).

The DN± I transition properties are located by
equating the pressure and chemical potentials of the two
phases Ð discotic nematic and isotropic.

3. Results and discussion

We study ® rst the e� ects of length to width ratio
x0 and potential parameters C*

i /k and C*
i /C

*
a on the

thermodynamic properties of the DN± I phase transition.
The method and details of calculation are the same as
described by Singh and Singh [10] . The calculation
has been done for a system of oblate ellipsoids (which
crudely simulates a discotic nematic phase) retaining
terms up to P6 in the expansion of the one-body
e� ective potential y( 1 ) (V) de® ned by equation (8). For a
given x0 the potential parameters are such as to repro-
duce quantitatively the DN± I transition temperature
TNI . 600 K which corresponds to the hexa-n-hexyloxy-
benzoate of triphenylene. The volume of a molecule is Figure 2. Variation of the DN± I transition temperature Tc as
taken 230AÊ 3 . Other transition parameters are determined a function of C*

i /k for C*
i /C

*
a =8. The number on the

curves indicates the value of x0 .selfconsistently by an iterative procedure.
The variation of interaction strength C*

i /k as a
function of x0 is plotted in ® gure 1. We observe from
the ® gure that C*

i /k decreases as the shape anisotropy
increases and its value reaches maximum at x0 . 1.0.
Figure 2 shows the variation of transition temperature
Tc with C*

i /k for the discotic nematic phase at di� erent
values of x0 . It is observed that the transition temper-
ature shifts to higher values with increase of anisotropy
and also with increase of the strength parameter of
attractive interaction. In ® gure 3, we show the variation
of transition temperature as a function of C*

i /C
*
a . It is

Figure 3. Variation of the DN± I transition temperature Tc as
a function of C*

i /C
*
a for a ® xed value of C*

i /k. The number
on the curves indicates the value of x0 .

evident from this ® gure that for C*
i /C

*
a > 20, the phase

transition temperature is not very sensitive to the value
of C*

i /C
*
a .

The variation of packing fraction g, and relative
change in density Dg/g for x0 = 0.6 and 0.7 as a function
of C*

i /C
*
a , is shown in ® gure 4. There is a jump in the

values of g and Dg/g with the change in the values
of x0 . For a ® xed value of x0 , g increases and Dg/gFigure 1. Variationof C*

i /k (whichyields the transition temper-
decreases with C*

i /C
*
a . But again changes are small forature of 600 K) as a function of x0 (for oblate ellipsoids)

with C*
i /C

*
a = 8. C*

i /C
*
a > 20. This trend for the discotic nematic is similar
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1003T heory of discotic nematics: e� ect of dispersion interaction

The pressure dependence of the transition temperature
(dT /dP) is determined by the Clausius± Clapeyron law.
DS /Nk measures the entropy change at the transition.
Comparing with the results obtained by Singh et al.
[12] we ® nd that the inclusion of P4 and P6 terms in
the calculation leads to a slight change in thermo-
dynamic quantities: P2 , Dg/g, g, DS /Nk , (dTc /dP) and C
increase slightly. The change is not very signi® cant but
the importance of higher orientational order parameters
cannot be neglected.

In table 2, we summarize a number of thermodynamic
properties at the DN± I transition at high pressures
ranging from 1 to 300 bar for dispersion interaction.
From the table it can be seen that for a given x0 and
interaction parameters, as pressure increases the phase
transition shifts to a higher temperature and the
fractional change in volume (DV/V) decreases. V* is the
reduced volume given by V* = p/(6g). The order para-
meters (P2 , P4 and P6 ), reduced volume V*, transition

Figure 4. The variation of packing fraction g and relative entropy DS /Nk and dTc /dP decrease with increasing
change in density Dg/g at the transition as a function of pressure. C measures the relative sensitivity of order
C*

i /C
*
a . C*

i /k are chosen to reproduce the DN± I transition
parameter (P2 ) to volume change, and increases slightlytemperature Tc . 600 K. The number on the curve indicates
with pressure. It is also observed that the range ofthe value of x0 .
stability of the discotic nematic phase is considerably
larger at constant density than at constant pressure.to that for the ordinary nematic (prolate ellipsoids) Figures 5 and6 showthe variation of order parameterswhich is in accordance with the observations of Gelbert (P2 , P4 and P6 ) as a function of T /Tc and C*

i /C
*
a ,and Baron [19] . respectively. From ® gure 5 it is evident that P2 , P4 andIn table 1, we list a number of thermodynamic quantities

P6 decrease with increasing T/Tc , but at a given T/Tcat the DN± I transition at a constant pressure equal value they increase with increase in shape anisotropy.to 1 bar. The parameter C listed in the table measures
the sensitivity of the order parameter to volume change

4. Conclusion(at constant temperature) and the temperature change
A statistical mechanical theory has been applied(at constant volume),

within mean-® eld approximation to analyse the in¯ uence
of dispersion interaction on the thermodynamic andC = Aq ln T

q ln r
B

P2

. (12)
orientational properties of the DN± I phase transition,

Table 1. The discotic nematic± isotropic transition parameter for a system having oblate molecules. P2 , P4 and P6 are order
parameters; g= (1/2)(g+gi), g and gi are the discotic nematic and isotropic packing fractions; DS /N k is the transition entropy
and C (Tc ) is de® ned in equation (12). The model parameters are chosen so as to reproduce the transition temperature
Tc # 600 K with C*

i /C
*
a =8.

x0 C*
i /k g Dg/g P2 P4 P6 DS /N k (dTc /dP)P= 1 b a r C (Tc )

0.9 a 7455.04 0.6011 0.0093 0.462 0.140 0.031 0.741 35.302 1.67
b 7453.72 0.6010 0.0092 0.458 Ð Ð 0.727 35.300 1.67

0.8 a 6365.15 0.5680 0.0179 0.503 0.168 0.041 0.934 57.857 1.77
b 6355.43 0.5670 0.0163 0.479 Ð Ð 0.845 57.280 1.76

0.7 a 5091.17 0.5090 0.0487 0.565 0.218 0.063 1.376 118.690 1.85
b 5110.07 0.5090 0.0444 0.541 Ð Ð 1.254 118.570 1.85

0.6 a 4098.11 0.4360 0.2078 0.735 0.404 0.176 3.269 275.190 1.95
b 4146.93 0.4360 0.1797 0.686 Ð Ð 2.784 273.740 1.93

a Our calculation including P2 , P4 and P6 .
b Results of Singh, et al. [12] , limited to P2 .
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1004 K. Singh et al.

Table 2. The discotic nematic isotropic transition parameters under high pressure. P2 , P4 and P6 are order parameters; DS /N k is
the transition entropy and C (Tc ) is de® ned in equation (12). The model parameters are chosen so as to reproduce the transition
temperature Tc # 600 K at P =1 bar, V* =p/6g, DV/V is the fractional change in volume and C*

i /C
*
a =8.

x0 C*
i /k P/bar Tc /k V* DV/V P2 P4 P6 DS /N k C (Tc ) dTc /dP

0.8 6365.15 1 612.71 0.922 0.017 0.503 0.168 0.041 0.93 1.765 56.86
100 619.62 0.919 0.015 0.488 0.157 0.037 0.86 1.769 54.45
200 624.84 0.914 0.014 0.487 0.157 0.037 0.84 1.774 51.88
300 631.43 0.911 0.013 0.470 0.146 0.033 0.77 1.778 49.94

0.7 5091.17 1 648.18 1.028 0.048 0.565 0.217 0.063 1.37 1.853 118.69
100 659.02 1.018 0.042 0.558 0.212 0.061 1.28 1.864 109.31
200 670.33 1.010 0.036 0.543 0.200 0.055 1.17 1.874 102.24
300 679.79 1.002 0.033 0.540 0.198 0.054 1.12 1.886 95.56

0.6 4098.11 1 658.84 1.201 0.207 0.735 0.403 0.176 3.26 1.951 275.19
100 683.53 1.173 0.147 0.702 0.361 0.146 2.57 1.956 233.03
200 706.53 1.157 0.113 0.670 0.324 0.123 2.13 1.964 209.60
300 725.45 1.140 0.094 0.654 0.307 0.112 1.89 1.981 189.51

Figure 6. The variation of order parameters P2 , P4 and P6

at the transition as a function of C*
i /C

*
a . C*

i /k are chosen
to reproduce the transition temperature Tc . 600 K. Order
parameters are plotted for x0 =0.6.Figure 5. Temperature variation of the long range orientational

order parameters at constant pressure. C*
i /k are chosen

so as to reproduce the DN± I transition temperature
in agreement with the Monte Carlo simulation of FrenkelTc . 600 K.
et al. [3 (a)] .

Quantitative agreement between theory and experi-
ment can not be really expected, since our model systemand to study the role of pressure on the phase transition.

Basic to this theory is the recognition that the pre- only crudely simulates a real system. However, we expect
that this simple approach to a study of the thermo-dominant factor in determining the mesophase stability

is geometric. The thermodynamic properties have been dynamic properties at the DN± I transition will certainly
provide a molecular basis for the study of discoticcalculated for a model system composed of nonspherical

molecules interacting via a pair potential having both nematic liquids. Further, we plan to use this approach
to study the results [20] of experimental data on temper-repulsive and attractive components. Our calculation

with second, fourth and sixth rank order parameters for ature dependence of the orientational order of discotic
nematic liquid crystals. This will be the subject of aphase transition properties of disc-like molecules shows

similar trends to that for an ordinary nematic, which is future communication.
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